TAIL DEPENDENCE OF OLS
Jochem Oorschot and
Chen Zhou ()
Econometric Theory, 2022, vol. 38, issue 2, 273-300
Abstract:
This paper shows that if the errors in a multiple regression model are heavy-tailed, the ordinary least squares (OLS) estimators for the regression coefficients are tail-dependent. The tail dependence arises, because the OLS estimators are stochastic linear combinations of heavy-tailed random variables. Moreover, tail dependence also exists between the fitted sum of squares (FSS) and the residual sum of squares (RSS), because they are stochastic quadratic combinations of heavy-tailed random variables.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:38:y:2022:i:2:p:273-300_2
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().