IDENTIFICATION AND ESTIMATION IN A CORRELATED RANDOM COEFFICIENTS TRANSFORMATION MODEL
Zhengyu Zhang,
Zequn Jin and
Beili Mu
Econometric Theory, 2022, vol. 38, issue 4, 621-688
Abstract:
This study examines identification and estimation in a correlated random coefficients (CRC) model with an unknown transformation of the dependent variable, namely $\lambda \left (Y^{*}\right)=B_{0}+X^{\prime }B$ , where the latent outcome $Y^{*}$ may be subject to a certain kind of censoring mechanism, $\lambda (\cdot)$ is an unknown, one-to-one monotone function, and the random coefficients $\left (B_{0},B\right)$ are allowed to be correlated with one or several components of X. Under a conditional median independence plus a conditional median zero restriction, the mean of B is shown to be identified up to scale. Moreover, we show the derivative of the median structural function (MSF) is point identified. This derivative of MSF resembles the marginal treatment effect introduced by Heckman and Vytlacil (2005, Econometrica 73, 669–738). It generalizes the usual average treatment effect in a linear CRC model and coincides with $E(B)$ when $\lambda $ is equal to the identity function; it is invariant to both location and scale normalization on the coefficients. We develop estimators for the identified parameters and derive asymptotic properties for the derivative of MSF. An empirical example using the U.K. Family Expenditure Survey is provided.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:38:y:2022:i:4:p:621-688_1
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().