QUANTILE DOUBLE AUTOREGRESSION
Qianqian Zhu and
Guodong Li
Econometric Theory, 2022, vol. 38, issue 4, 793-839
Abstract:
Many financial time series have varying structures at different quantile levels, and also exhibit the phenomenon of conditional heteroskedasticity at the same time. However, there is presently no time series model that accommodates both of these features. This paper fills the gap by proposing a novel conditional heteroskedastic model called “quantile double autoregression”. The strict stationarity of the new model is derived, and self-weighted conditional quantile estimation is suggested. Two promising properties of the original double autoregressive model are shown to be preserved. Based on the quantile autocorrelation function and self-weighting concept, three portmanteau tests are constructed to check the adequacy of the fitted conditional quantiles. The finite sample performance of the proposed inferential tools is examined by simulation studies, and the need for use of the new model is further demonstrated by analyzing the S&P500 Index.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:38:y:2022:i:4:p:793-839_4
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().