ESTIMATION OF THE KRONECKER COVARIANCE MODEL BY QUADRATIC FORM
Oliver Linton and
Haihan Tang
Econometric Theory, 2022, vol. 38, issue 5, 1014-1067
Abstract:
We propose a new estimator, the quadratic form estimator, of the Kronecker product model for covariance matrices. We show that this estimator has good properties in the large dimensional case (i.e., the cross-sectional dimension n is large relative to the sample size T). In particular, the quadratic form estimator is consistent in a relative Frobenius norm sense provided ${\log }^3n/T\to 0$ . We obtain the limiting distributions of the Lagrange multiplier and Wald tests under both the null and local alternatives concerning the mean vector $\mu $ . Testing linear restrictions of $\mu $ is also investigated. Finally, our methodology is shown to perform well in finite sample situations both when the Kronecker product model is true and when it is not true.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Estimation of the Kronecker Covariance Model by Quadratic Form (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:38:y:2022:i:5:p:1014-1067_8
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().