COMPLETE SUBSET AVERAGING FOR QUANTILE REGRESSIONS
Ji Hyung Lee and
Youngki Shin
Econometric Theory, 2023, vol. 39, issue 1, 146-188
Abstract:
We propose a novel conditional quantile prediction method based on complete subset averaging (CSA) for quantile regressions. All models under consideration are potentially misspecified, and the dimension of regressors goes to infinity as the sample size increases. Since we average over the complete subsets, the number of models is much larger than the usual model averaging method which adopts sophisticated weighting schemes. We propose to use an equal weight but select the proper size of the complete subset based on the leave-one-out cross-validation method. Building upon the theory of Lu and Su (2015, Journal of Econometrics 188, 40–58), we investigate the large sample properties of CSA and show the asymptotic optimality in the sense of Li (1987, Annals of Statistics 15, 958–975) We check the finite sample performance via Monte Carlo simulations and empirical applications.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Complete Subset Averaging for Quantile Regressions (2021) 
Working Paper: Complete Subset Averaging for Quantile Regressions (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:39:y:2023:i:1:p:146-188_5
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().