EconPapers    
Economics at your fingertips  
 

STRETCHING THE NET: MULTIDIMENSIONAL REGULARIZATION

Jaume Vives-i-Bastida

Econometric Theory, 2023, vol. 39, issue 1, 189-218

Abstract: This paper derives asymptotic risk (expected loss) results for shrinkage estimators with multidimensional regularization in high-dimensional settings. We introduce a class of multidimensional shrinkage estimators (MuSEs), which includes the elastic net, and show that—as the number of parameters to estimate grows—the empirical loss converges to the oracle-optimal risk. This result holds when the regularization parameters are estimated empirically via cross-validation or Stein’s unbiased risk estimate. To help guide applied researchers in their choice of estimator, we compare the empirical Bayes risk of the lasso, ridge, and elastic net in a spike and normal setting. Of the three estimators, we find that the elastic net performs best when the data are moderately sparse and the lasso performs best when the data are highly sparse. Our analysis suggests that applied researchers who are unsure about the level of sparsity in their data might benefit from using MuSEs such as the elastic net. We exploit these insights to propose a new estimator, the cubic net, and demonstrate through simulations that it outperforms the three other estimators for any sparsity level.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:39:y:2023:i:1:p:189-218_6

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:39:y:2023:i:1:p:189-218_6