EconPapers    
Economics at your fingertips  
 

A WILD BOOTSTRAP FOR DEPENDENT DATA

Ulrich Hounyo

Econometric Theory, 2023, vol. 39, issue 2, 264-289

Abstract: This paper introduces a novel wild bootstrap for dependent data (WBDD) as a means of calculating standard errors of estimators and constructing confidence regions for parameters based on dependent heterogeneous data. The consistency of the bootstrap variance estimator for smooth function of the sample mean is shown to be robust against heteroskedasticity and dependence of unknown form. The first-order asymptotic validity of the WBDD in distribution approximation is established when data are assumed to satisfy a near epoch dependent condition and under the framework of the smooth function model. The WBDD offers a viable alternative to the existing non parametric bootstrap methods for dependent data. It preserves the second-order correctness property of blockwise bootstrap (provided we choose the external random variables appropriately), for stationary time series and smooth functions of the mean. This desirable property of any bootstrap method is not known for extant wild-based bootstrap methods for dependent data. Simulation studies illustrate the finite-sample performance of the WBDD.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:39:y:2023:i:2:p:264-289_2

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:39:y:2023:i:2:p:264-289_2