TESTING FOR UNOBSERVED HETEROGENEOUS TREATMENT EFFECTS WITH OBSERVATIONAL DATA
Yu-Chin Hsu,
Ta-Cheng Huang and
Haiqing Xu
Econometric Theory, 2023, vol. 39, issue 3, 582-622
Abstract:
Unobserved heterogeneous treatment effects have been emphasized in the recent policy evaluation literature (see, e.g., Heckman and Vytlacil (2005, Econometrica 73, 669–738)). This paper proposes a nonparametric test for unobserved heterogeneous treatment effects in a treatment effect model with a binary treatment assignment, allowing for individuals’ self-selection to the treatment. Under the standard local average treatment effects assumptions, i.e., the no defiers condition, we derive testable model restrictions for the hypothesis of unobserved heterogeneous treatment effects. Furthermore, we show that if the treatment outcomes satisfy a monotonicity assumption, these model restrictions are also sufficient. Then, we propose a modified Kolmogorov–Smirnov-type test which is consistent and simple to implement. Monte Carlo simulations show that our test performs well in finite samples. For illustration, we apply our test to study heterogeneous treatment effects of the Job Training Partnership Act on earnings and the impacts of fertility on family income, where the null hypothesis of homogeneous treatment effects gets rejected in the second case but fails to be rejected in the first application.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Testing for Unobserved Heterogeneous Treatment Effects with Observational Data (2021) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:39:y:2023:i:3:p:582-622_4
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().