BACKWARD CUSUM FOR TESTING AND MONITORING STRUCTURAL CHANGE WITH AN APPLICATION TO COVID-19 PANDEMIC DATA
Sven Otto and
Jörg Breitung
Econometric Theory, 2023, vol. 39, issue 4, 659-692
Abstract:
It is well known that the conventional cumulative sum (CUSUM) test suffers from low power and large detection delay. In order to improve the power of the test, we propose two alternative statistics. The backward CUSUM detector considers the recursive residuals in reverse chronological order, whereas the stacked backward CUSUM detector sequentially cumulates a triangular array of backwardly cumulated residuals. A multivariate invariance principle for partial sums of recursive residuals is given, and the limiting distributions of the test statistics are derived under local alternatives. In the retrospective context, the local power of the tests is shown to be substantially higher than that of the conventional CUSUM test if a break occurs in the middle or at the end of the sample. When applied to monitoring schemes, the detection delay of the stacked backward CUSUM is found to be much shorter than that of the conventional monitoring CUSUM procedure. Furthermore, we propose an estimator of the break date based on the backward CUSUM detector and show that in monitoring exercises this estimator tends to outperform the usual maximum likelihood estimator. Finally, an application of the methodology to COVID-19 data is presented.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:39:y:2023:i:4:p:659-692_1
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().