SIMULTANEOUS CONFIDENCE BANDS FOR CONDITIONAL VALUE-AT-RISK AND EXPECTED SHORTFALL
Shuo Li,
Liuhua Peng and
Xiaojun Song
Econometric Theory, 2023, vol. 39, issue 5, 1009-1043
Abstract:
Conditional value-at-risk (CVaR) and conditional expected shortfall (CES) are widely adopted risk measures which help monitor potential tail risk while adapting to evolving market information. In this paper, we propose an approach to constructing simultaneous confidence bands (SCBs) for tail risk as measured by CVaR and CES, with the confidence bands uniformly valid for a set of tail levels. We consider one-sided tail risk (downside or upside tail risk) as well as relative tail risk (the ratio of upside to downside tail risk). A general class of location-scale models with heavy-tailed innovations is employed to filter out the return dynamics. Then, CVaR and CES are estimated with the aid of extreme value theory. In the asymptotic theory, we consider two scenarios: (i) the extreme scenario that allows for extrapolation beyond the range of the available data and (ii) the intermediate scenario that works exclusively in the case where the available data are adequate relative to the tail level. For finite-sample implementation, we propose a novel bootstrap procedure to circumvent the slow convergence rates of the SCBs as well as infeasibility of approximating the limiting distributions. A series of Monte Carlo simulations confirm that our approach works well in finite samples.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:39:y:2023:i:5:p:1009-1043_5
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().