EconPapers    
Economics at your fingertips  
 

NONPARAMETRIC PREDICTION WITH SPATIAL DATA

Abhimanyu Gupta and Javier Hidalgo

Econometric Theory, 2023, vol. 39, issue 5, 950-988

Abstract: We describe a (nonparametric) prediction algorithm for spatial data, based on a canonical factorization of the spectral density function. We provide theoretical results showing that the predictor has desirable asymptotic properties. Finite sample performance is assessed in a Monte Carlo study that also compares our algorithm to a rival nonparametric method based on the infinite $AR$ representation of the dynamics of the data. Finally, we apply our methodology to predict house prices in Los Angeles.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:39:y:2023:i:5:p:950-988_3

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:39:y:2023:i:5:p:950-988_3