EconPapers    
Economics at your fingertips  
 

SIMULTANEOUS EQUATIONS MODELS WITH HIGHER-ORDER SPATIAL OR SOCIAL NETWORK INTERACTIONS

David Drukker, Peter Egger and Ingmar Prucha

Econometric Theory, 2023, vol. 39, issue 6, 1154-1201

Abstract: This paper develops an estimation methodology for network data generated from a system of simultaneous equations, which allows for network interdependencies via spatial lags in the endogenous and exogenous variables, as well as in the disturbances. By allowing for higher-order spatial lags, our specification provides important flexibility in modeling network interactions. The estimation methodology builds, among others, on the two-step generalized method of moments estimation approach introduced in Kelejian and Prucha (1998, Journal of Real Estate Finance and Economics 17, 99–121; 1999, International Economic Review 40, 509–533; 2004, Journal of Econometrics 118, 27–50). The paper considers limited and full information estimators, and one- and two-step estimators, and establishes their asymptotic properties. In contrast to some of the earlier two-step estimation literature, our asymptotic results facilitate joint tests for the absence of all forms of network spillovers.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:39:y:2023:i:6:p:1154-1201_4

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-23
Handle: RePEc:cup:etheor:v:39:y:2023:i:6:p:1154-1201_4