EconPapers    
Economics at your fingertips  
 

Methods for Constructing Top Order Invariant Polynomials

Yasuko Chikuse

Econometric Theory, 1987, vol. 3, issue 2, 195-207

Abstract: The invariant polynomials (Davis [8] and Chikuse [2] with r(r ≥ 2) symmetric matrix arguments have been defined, extending the zonal polynomials, and applied in multivariate distribution theory. The usefulness of the polynomials has attracted the attention of econometricians, and some recent papers have applied the methods to distribution theory in econometrics (e.g., Hillier [14] and Phillips [22]).The ‘top order’ invariant polynomials , in which each of the partitions of ki 1 = 1,…,r, and has only one part, occur frequently in multivariate distribution theory (e.g., Hillier and Satchell [17] and Phillips [27]). In this paper we give three methods of constructing these polynomials, extending those of Ruben [28] for the top order zonal polynomials. The first two methods yield explicit formulae for the polynomials and then we give a recurrence procedure. It is shown that some of the expansions presented in Chikuse and Davis [4] are simplified for the top order invariant polynomials. A brief discussion is given on the ‘lowest order’ invariant polynomials.

Date: 1987
References: Add references at CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:3:y:1987:i:02:p:195-207_01

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:3:y:1987:i:02:p:195-207_01