SIMPLE SEMIPARAMETRIC ESTIMATION OF ORDERED RESPONSE MODELS
Ruixuan Liu and
Zhengfei Yu
Econometric Theory, 2024, vol. 40, issue 1, 1-36
Abstract:
We propose two simple semiparametric estimation methods for ordered response models with an unknown error distribution. The proposed methods do not require users to choose any tuning parameters, and they automatically incorporate the monotonicity restriction of the unknown distribution function. Fixing finite-dimensional parameters in the model, we construct nonparametric maximum likelihood estimates for the error distribution based on the related binary choice data or the entire ordered response data. We then obtain estimates for finite-dimensional parameters based on moment conditions given the estimated distribution function. Our semiparametric approaches deliver root-n consistent and asymptotically normal estimators of the regression coefficient and threshold parameter. We also develop valid bootstrap procedures for inference. The advantages of our methods are borne out in simulation studies and a real data application.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:40:y:2024:i:1:p:1-36_1
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().