SEQUENTIALLY ESTIMATING THE STRUCTURAL EQUATION BY POWER TRANSFORMATION
Jaedo Choi,
Hyungsik Roger Moon and
Jin Seo Cho ()
Econometric Theory, 2024, vol. 40, issue 1, 98-161
Abstract:
This study provides an econometric methodology to test a linear structural relationship among economic variables. We propose the so-called distance-difference (DD) test and show that it has omnibus power against arbitrary nonlinear structural relationships. If the DD-test rejects the linear model hypothesis, a sequential testing procedure assisted by the DD-test can consistently estimate the degree of a polynomial function that arbitrarily approximates the nonlinear structural equation. Using extensive Monte Carlo simulations, we confirm the DD-test’s finite sample properties and compare its performance with the sequential testing procedure assisted by the J-test and moment selection criteria. Finally, through investigation, we empirically illustrate the relationship between the value-added and its production factors using firm-level data from the United States. We demonstrate that the production function has exhibited a factor-biased technological change instead of Hicks-neutral technology presumed by the Cobb–Douglas production function.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Sequentially Estimating the Structural Equation by Power Transformation (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:40:y:2024:i:1:p:98-161_4
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().