TWO-STEP ESTIMATION OF QUANTILE PANEL DATA MODELS WITH INTERACTIVE FIXED EFFECTS
Liang Chen
Econometric Theory, 2024, vol. 40, issue 2, 419-446
Abstract:
This paper considers the estimation of panel data models with interactive fixed effects where the idiosyncratic errors are subject to conditional quantile restrictions. An easy-to-implement two-step estimator is proposed for the coefficients of the observed regressors. In the first step, the principal component analysis is applied to the cross-sectional averages of the regressors to estimate the latent factors. In the second step, the smoothed quantile regression is used to estimate the coefficients of the observed regressors and the factor loadings jointly. The consistency and asymptotic normality of the estimator are established under large $N,T$ asymptotics. It is found that the asymptotic distribution of the estimator suffers from asymptotic biases, and this paper shows how to correct the biases using both analytical and split-panel jackknife bias corrections. Simulation studies confirm that the proposed estimator performs well with moderate sample sizes.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:40:y:2024:i:2:p:419-446_5
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().