A JACKKNIFE LAGRANGE MULTIPLIER TEST WITH MANY WEAK INSTRUMENTS
Yukitoshi Matsushita and
Taisuke Otsu
Econometric Theory, 2024, vol. 40, issue 2, 447-470
Abstract:
This paper proposes a jackknife Lagrange multiplier (JLM) test for instrumental variable regression models, which is robust to (i) many instruments, where the number of instruments may increase proportionally with the sample size, (ii) arbitrarily weak instruments, and (iii) heteroskedastic errors. In contrast to Crudu, Mellace, and Sándor (2021, Econometric Theory 37, 281–310) and Mikusheva and Sun (2021, Review of Economic Studies 89, 2663–2686), who proposed jackknife Anderson–Rubin tests that are also robust to (i)–(iii), we modify a score statistic by jackknifing and construct its heteroskedasticity robust variance estimator. Compared to the Lagrange multiplier tests by Kleibergen (2002, Econometrica 70, 1781–1803) and Moreira (2001, Tests with Correct Size when Instruments Can Be Arbitrarily Weak, Working paper) and their modification for many instruments by Hansen, Hausman, and Newey (2008, Journal of Business & Economic Statistics 26, 398–422), our JLM test is robust to heteroskedastic errors and may circumvent a possible decrease in the power function. Simulation results illustrate the desirable size and power properties of the proposed method.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:40:y:2024:i:2:p:447-470_6
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().