KERNEL ESTIMATION OF SPOT VOLATILITY WITH MICROSTRUCTURE NOISE USING PRE-AVERAGING
José E. Figueroa-López and
Bei Wu
Econometric Theory, 2024, vol. 40, issue 3, 558-607
Abstract:
We revisit the problem of estimating the spot volatility of an Itô semimartingale using a kernel estimator. A central limit theorem (CLT) with an optimal convergence rate is established for a general two-sided kernel. A new pre-averaging/kernel estimator for spot volatility is also introduced to handle the microstructure noise of ultra high-frequency observations. A CLT for the estimation error of the new estimator is obtained, and the optimal selection of the bandwidth and kernel function is subsequently studied. It is shown that the pre-averaging/kernel estimator’s asymptotic variance is minimal for two-sided exponential kernels, hence justifying the need of working with kernels of unbounded support. Feasible implementation of the proposed estimators with optimal bandwidth is developed as well. Monte Carlo experiments confirm the superior performance of the new method.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:40:y:2024:i:3:p:558-607_4
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().