AN AVERAGING ESTIMATOR FOR TWO-STEP M-ESTIMATION IN SEMIPARAMETRIC MODELS
Ruoyao Shi
Econometric Theory, 2024, vol. 40, issue 3, 652-687
Abstract:
In a two-step extremum estimation (M-estimation) framework with a finite-dimensional parameter of interest and a potentially infinite-dimensional first-step nuisance parameter, this paper proposes an averaging estimator that combines a semiparametric estimator based on a nonparametric first step and a parametric estimator which imposes parametric restrictions on the first step. The averaging weight is an easy-to-compute sample analog of an infeasible optimal weight that minimizes the asymptotic quadratic risk. Under Stein-type conditions, the asymptotic lower bound of the truncated quadratic risk difference between the averaging estimator and the semiparametric estimator is strictly less than zero for a class of data generating processes that includes both correct specification and varied degrees of misspecification of the parametric restrictions, and the asymptotic upper bound is weakly less than zero. The averaging estimator, along with an easy-to-implement inference method, is demonstrated in an example.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:40:y:2024:i:3:p:652-687_6
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().