SUPERCONSISTENCY OF TESTS IN HIGH DIMENSIONS
Anders Bredahl Kock and
David Preinerstorfer
Econometric Theory, 2024, vol. 40, issue 3, 688-704
Abstract:
To assess whether there is some signal in a big database, aggregate tests for the global null hypothesis of no effect are routinely applied in practice before more specialized analysis is carried out. Although a plethora of aggregate tests is available, each test has its strengths but also its blind spots. In a Gaussian sequence model, we study whether it is possible to obtain a test with substantially better consistency properties than the likelihood ratio (LR; i.e., Euclidean norm-based) test. We establish an impossibility result, showing that in the high-dimensional framework we consider, the set of alternatives for which a test may improve upon the LR test (i.e., its superconsistency points) is always asymptotically negligible in a relative volume sense.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:40:y:2024:i:3:p:688-704_7
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().