NUCLEAR NORM REGULARIZED QUANTILE REGRESSION WITH INTERACTIVE FIXED EFFECTS
Junlong Feng
Econometric Theory, 2024, vol. 40, issue 6, 1391-1421
Abstract:
This paper studies large N and large T conditional quantile panel data models with interactive fixed effects. We propose a nuclear norm penalized estimator of the coefficients on the covariates and the low-rank matrix formed by the interactive fixed effects. The estimator solves a convex minimization problem, not requiring pre-estimation of the (number of) interactive fixed effects. It also allows the number of covariates to grow slowly with N and T. We derive an error bound on the estimator that holds uniformly in the quantile level. The order of the bound implies uniform consistency of the estimator and is nearly optimal for the low-rank component. Given the error bound, we also propose a consistent estimator of the number of interactive fixed effects at any quantile level. We demonstrate the performance of the estimator via Monte Carlo simulations.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:40:y:2024:i:6:p:1391-1421_5
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().