EconPapers    
Economics at your fingertips  
 

INFERENCE ON GARCH-MIDAS MODELS WITHOUT ANY SMALL-ORDER MOMENT

Christian Francq, Baye Matar Kandji and Jean-Michel Zakoian

Econometric Theory, 2024, vol. 40, issue 6, 1422-1455

Abstract: In GARCH-mixed-data sampling models, the volatility is decomposed into the product of two factors which are often interpreted as “short-run” (high-frequency) and “long-run” (low-frequency) components. While two-component volatility models are widely used in applied works, some of their theoretical properties remain unexplored. We show that the strictly stationary solutions of such models do not admit any small-order finite moment, contrary to classical GARCH. It is shown that the strong consistency and the asymptotic normality of the quasi-maximum likelihood estimator hold despite the absence of moments. Tests for the presence of a long-run volatility relying on the asymptotic theory and a bootstrap procedure are proposed. Our results are illustrated via Monte Carlo experiments and real financial data.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:40:y:2024:i:6:p:1422-1455_6

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-23
Handle: RePEc:cup:etheor:v:40:y:2024:i:6:p:1422-1455_6