EconPapers    
Economics at your fingertips  
 

THE ESTIMATION RISK IN EXTREME SYSTEMIC RISK FORECASTS

Yannick Hoga

Econometric Theory, 2025, vol. 41, issue 2, 341-390

Abstract: Systemic risk measures have been shown to be predictive of financial crises and declines in real activity. Thus, forecasting them is of major importance in finance and economics. In this paper, we propose a new forecasting method for systemic risk as measured by the marginal expected shortfall (MES). It is based on first de-volatilizing the observations and, then, calculating systemic risk for the residuals using an estimator based on extreme value theory. We show the validity of the method by establishing the asymptotic normality of the MES forecasts. The good finite-sample coverage of the implied MES forecast intervals is confirmed in simulations. An empirical application to major U.S. banks illustrates the significant time variation in the precision of MES forecasts, and explores the implications of this fact from a regulatory perspective.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:41:y:2025:i:2:p:341-390_4

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-10-25
Handle: RePEc:cup:etheor:v:41:y:2025:i:2:p:341-390_4