EconPapers    
Economics at your fingertips  
 

ENCOMPASSING TESTS FOR NONPARAMETRIC REGRESSIONS

Elia Lapenta and Pascal Lavergne

Econometric Theory, 2025, vol. 41, issue 3, 709-738

Abstract: We set up a formal framework to characterize encompassing of nonparametric models through the $L^2$ distance. We contrast it to previous literature on the comparison of nonparametric regression models. We then develop testing procedures for the encompassing hypothesis that are fully nonparametric. Our test statistics depend on kernel regression, raising the issue of bandwidth’s choice. We investigate two alternative approaches to obtain a “small bias property” for our test statistics. We show the validity of a wild bootstrap method. We empirically study the use of a data-driven bandwidth and illustrate the attractive features of our tests for small and moderate samples.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:41:y:2025:i:3:p:709-738_7

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-10-25
Handle: RePEc:cup:etheor:v:41:y:2025:i:3:p:709-738_7