EconPapers    
Economics at your fingertips  
 

ARMA Memory Index Modeling of Economic Time Series

Herman Bierens ()

Econometric Theory, 1988, vol. 4, issue 1, 35-59

Abstract: In this paper, it will be shown that if we condition a k-variate rational-valued time series process on its entire past, it is possible to capture all relevant information on the past of the process by a single random variable. This scalar random variable can be formed as an autoregressive moving average of past observations; Since economic data are usually reported in a finite number of digits, this result applies to virtually all economic time series. Therefore, economic time series regressions generally take the form of a nonlinear function of an autoregressive moving average of past observations. This approach is applied to model specification testing of nonlinear ARX models.

Date: 1988
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:4:y:1988:i:01:p:35-59_01

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:4:y:1988:i:01:p:35-59_01