EconPapers    
Economics at your fingertips  
 

Some Exact Formulae for Autoregressive Moving Average Processes

Victoria Zinde-Walsh

Econometric Theory, 1988, vol. 4, issue 3, 384-402

Abstract: This paper demonstrates that for a finite stationary autoregressive moving average process the inverse of the covariance matrix differs from the matrix of the covariances of the inverse process by a matrix of low rank. The formula for the exact inverse of the covariance matrix of the scalar or multivariate process is provided. We obtain approximations based on this formula and evaluate some of the approximate results in the existing literature. Applications to computational algorithms and to the distributions of two-step estimators are discussed. In addition the paper contains the formula for the determinant of the covariance matrix which is useful in exact maximum likelihood estimation; it also lists the expressions for the autocovariances of scalar autoregressive moving average processes.

Date: 1988
References: Add references at CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:4:y:1988:i:03:p:384-402_01

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:4:y:1988:i:03:p:384-402_01