Local and Global Testing of Linear and Nonlinear Inequality Constraints in Nonlinear Econometric Models
Frank A. Wolak
Econometric Theory, 1989, vol. 5, issue 1, 1-35
Abstract:
This paper considers a general nonlinear econometric model framework that contains a large class of estimators defined as solutions to optimization problems. For this framework we derive several asymptotically equivalent forms of a test statistic for the local (in a way made precise in the paper) multivariate nonlinear inequality constraints test H: h(β) ≥ 0 versus K: β ∈ RK. We extend these results to consider local hypotheses tests of the form H: h1(β) ≥ 0 and h2(β) = 0 versus K: β ∈ RK. For each test we derive the asymptotic distribution for any size test as a weighted sum of χ2-distributions. We contrast local as opposed to global inequality constraints testing and give conditions on the model and constraints when each is possible. This paper also extends the well-known duality results in testing multivariate equality constraints to the case of nonlinear multivariate inequality constraints and combinations of nonlinear inequality and equality constraints.
Date: 1989
References: Add references at CitEc
Citations: View citations in EconPapers (46)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:5:y:1989:i:01:p:1-35_01
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().