Bandwidth Selection in Semiparametric Estimation of Censored Linear Regression Models
Peter Hall and
Joel L. Horowitz
Econometric Theory, 1990, vol. 6, issue 2, 123-150
Abstract:
Quantile and semiparametric M estimation are methods for estimating a censored linear regression model without assuming that the distribution of the random component of the model belongs to a known parametric family. Both methods require estimating derivatives of the unknown cumulative distribution function of the random component. The derivatives can be estimated consistently using kernel estimators in the case of quantile estimation and finite difference quotients in the case of semiparametric M estimation. However, the resulting estimates of derivatives, as well as parameter estimates and inferences that depend on the derivatives, can be highly sensitive to the choice of the kernel and finite difference bandwidths. This paper discusses the theory of asymptotically optimal bandwidths for kernel and difference quotient estimation of the derivatives required for quantile and semiparametric M estimation, respectively. We do not present a fully automatic method for bandwidth selection.
Date: 1990
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:6:y:1990:i:02:p:123-150_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().