EconPapers    
Economics at your fingertips  
 

A Continuous Time Approximation to the Stationary First-Order Autoregressive Model

Pierre Perron

Econometric Theory, 1991, vol. 7, issue 2, 236-252

Abstract: We consider the least-squares estimator in a strictly stationary first-order autoregression without an estimated intercept. We study its continuous time asymptotic distribution based on an asymptotic framework where the sampling interval converges to zero as the sample size increases. We derive a momentgenerating function which permits the calculation of percentage points and moments of this asymptotic distribution and assess the adequacy of the approximation to the finite sample distribution. In general, the approximation is excellent for values of the autoregressive parameter near one. We also consider the behavior of the power function of tests based on the normalized leastsquares estimator. Interesting nonmonotonic properties are uncovered. This analysis extends the study of Perron [15] and helps to provide explanations for the finite sample results established by Nankervis and Savin [13].

Date: 1991
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:7:y:1991:i:02:p:236-252_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-04-07
Handle: RePEc:cup:etheor:v:7:y:1991:i:02:p:236-252_00