A Continuous Time Approximation to the Stationary First-Order Autoregressive Model
Pierre Perron
Econometric Theory, 1991, vol. 7, issue 2, 236-252
Abstract:
We consider the least-squares estimator in a strictly stationary first-order autoregression without an estimated intercept. We study its continuous time asymptotic distribution based on an asymptotic framework where the sampling interval converges to zero as the sample size increases. We derive a momentgenerating function which permits the calculation of percentage points and moments of this asymptotic distribution and assess the adequacy of the approximation to the finite sample distribution. In general, the approximation is excellent for values of the autoregressive parameter near one. We also consider the behavior of the power function of tests based on the normalized leastsquares estimator. Interesting nonmonotonic properties are uncovered. This analysis extends the study of Perron [15] and helps to provide explanations for the finite sample results established by Nankervis and Savin [13].
Date: 1991
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:7:y:1991:i:02:p:236-252_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().