On Limited Dependent Variable Models: Maximum Likelihood Estimation and Test of One-sided Hypothesis
Mervyn J. Silvapulle
Econometric Theory, 1991, vol. 7, issue 3, 385-395
Abstract:
The limited dependent variable models with errors having log-concave density functions are studied here. For such models with normal errors, the asymptotic normality of the maximum likelihood estimator was established by Amemiya [1]. We show, when the density of the error distribution is log-concave, that the maximum likelihood estimator exists with arbitrarily large probability for large sample sizes, and is asymptotically normal. The general theory presented here includes the important special cases of normal, logistic, and extreme value error distributions. The main results are established under rather weak conditions. It is also shown that, under the null hypothesis, the asymptotic distribution of the likelihood ratio statistic for testing a one-sided alternative hypothesis is a weighted sum of chi-squares.
Date: 1991
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:7:y:1991:i:03:p:385-395_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().