EconPapers    
Economics at your fingertips  
 

The Joint Distribution of Forecast Errors in the AR(1) Model

Gordon Kemp

Econometric Theory, 1991, vol. 7, issue 4, 497-518

Abstract: Second-order asymptotic expansion approximations to the joint distributions of dynamic forecast errors and of static forecast errors in the stationary Gaussian pure AR(1) model are derived. The approximation to the dynamic forecast errors distribution can be expressed as a multivariate normal distribution with modified mean vector and covariance matrix, thus generalizing the results of Phillips [12]. However, the approximation to the static forecast errors distribution includes skewness and kurtosis terms. Thus the class of multivariate normal distributions does not provide as good approximations (in terms of error convergence rates) to the distributions of the static forecast errors as to the distributions of the dynamic forecast errors. These results cast some doubt on the appropriateness of model validation procedures, such as Chow tests, which use the static forecast errors and implicitly assume that these have a distribution which is well approximated by a multivariate normal.

Date: 1991
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:7:y:1991:i:04:p:497-518_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:7:y:1991:i:04:p:497-518_00