EconPapers    
Economics at your fingertips  
 

Adaptive Estimation in Time Serise Regression Models With Heteroskedasticity of Unknown Form

Javier Hidalgo

Econometric Theory, 1992, vol. 8, issue 2, 161-187

Abstract: In a multiple time series regression model the residuals are heteroskedastic and serially correlated of unknown form. GLS estimates of the regression coefficients using kernel regression and spectral methods are shown to be adaptive, in the sense of having the same asymptotic distribution, to the first order, as GLS estimates based on knowledge of the actual heteroskedasticity and serial correlation. A Monte Carlo experiment about the performance of our estimator is described.

Date: 1992
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:8:y:1992:i:02:p:161-187_01

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:8:y:1992:i:02:p:161-187_01