Stochastic Expansions and Asymptotic Approximations
Michael A. Magdalinos
Econometric Theory, 1992, vol. 8, issue 3, 343-367
Abstract:
Under general conditions the distribution function of the first few terms in a stochastic expansion of an econometric estimator or test statistic provides an asymptotic approximation to the distribution function of the original estimator or test statistic with an error of order less than that of the limiting normal or chi-square approximation. This can be used to establish the validity of several refined asymptotic methods, including the comparison of Nagar-type moments and the use of formal Edgeworth or Edgeworth-type approximations.
Date: 1992
References: Add references at CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:8:y:1992:i:03:p:343-367_01
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().