EconPapers    
Economics at your fingertips  
 

Optimal Rates of Convergence of Parameter Estimators in the Binary Response Model with Weak Distributional Assumptions

Joel L. Horowitz

Econometric Theory, 1993, vol. 9, issue 1, 1-18

Abstract: The smoothed maximum score estimator of the coefficient vector of a binary response model is consistent and, after centering and suitable normalization, asymptotically normally distributed under weak assumptions [5]. Its rate of convergence in probability is N−h/(2h+1), where h ≥ 2 is an integer whose value depends on the strength of certain smoothness assumptions. This rate of convergence is faster than that of the maximum score estimator of Manski [11,12], which converges at the rate N−1/3 under assumptions that are somewhat weaker than those of the smoothed estimator. In this paper I prove that under the assumptions of smoothed maximum score estimation, N−h/(2h+1) is the fastest achievable rate of convergence of an estimator of the coefficient vector of a binary response model. Thus, the smoothed maximum score estimator has the fastest possible rate of convergence. The rate of convergence is defined in a minimax sense so as to exclude superefficient estimators.

Date: 1993
References: Add references at CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:9:y:1993:i:01:p:1-18_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:9:y:1993:i:01:p:1-18_00