Alternative Bias Approximations in Regressions with a Lagged-Dependent Variable
Jan Kiviet and
Garry Phillips
Econometric Theory, 1993, vol. 9, issue 1, 62-80
Abstract:
The small sample bias of the least-squares coefficient estimator is examined in the dynamic multiple linear regression model with normally distributed whitenoise disturbances and an arbitrary number of regressors which are all exogenous except for the one-period lagged-dependent variable. We employ large sample (T → ∞) and small disturbance (σ → 0) asymptotic theory and derive and compare expressions to O(T−1) and to O(σ2), respectively, for the bias in the least-squares coefficient vector. In some simulations and for an empirical example, we examine the mean (squared) error of these expressions and of corrected estimation procedures that yield estimates that are unbiased to O(T−l) and to O(σ2), respectively. The large sample approach proves to be superior, easily applicable, and capable of generating more efficient and less biased estimators.
Date: 1993
References: Add references at CitEc
Citations: View citations in EconPapers (40)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:9:y:1993:i:01:p:62-80_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().