EconPapers    
Economics at your fingertips  
 

Asymptotic Expansions for Random Walks with Normal Errors

John Knight and S.E. Satchell

Econometric Theory, 1993, vol. 9, issue 3, 363-376

Abstract: The asymptotic distribution of the least-squares estimators in the random walk model was first found by White [17] and is described in terms of functional of Brownian motion with no closed form expression known. Evans and Savin [5,6] and others have examined numerically both the asymptotic and finite sample distribution. The purpose of this paper is to derive an asymptotic expansion for the distribution. Our approach is in contrast to Phillips [12,13] who has already derived some terms in a general expansion by analyzing the functionals. We proceed by assuming that the errors are normally distributed and expand the characteristic function directly. Then, via numerical integration, we invert the characteristic function to find the distribution. The approximation is shown to be extremely accurate for all sample sizes ≥25, and can be used to construct simple tests for the presence of a unit root in a univariate time series model. This could have useful applications in applied economics.

Date: 1993
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:9:y:1993:i:03:p:363-376_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:9:y:1993:i:03:p:363-376_00