EconPapers    
Economics at your fingertips  
 

On the Noninvertible Moving Average Time Series with Infinite Variance

Ngai Hang Chan

Econometric Theory, 1993, vol. 9, issue 4, 680-685

Abstract: The limiting distribution of the least squares estimate of the derived process of a noninvertible and nearly noninvertible moving average model with infinite variance innovations is established as a functional of a Lévy process. The form of the limiting law depends on the initial value of the innovation and the stable index α. This result enables one to perform asymptotic testing for the presence of a unit root for a noninvertible moving average model through the constructed derived process under the null hypothesis. It provides not only a parallel analog of its autoregressive counterparts, but also a useful alternative to determine “over-differencing” for time series that exhibit heavy-tailed phenomena.

Date: 1993
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:9:y:1993:i:04:p:680-685_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:9:y:1993:i:04:p:680-685_00