Necessary and Sufficient Conditions for the Mean-Variance Portfolio Model With Constant Risk Aversion
Thomas W. Epps
Journal of Financial and Quantitative Analysis, 1981, vol. 16, issue 2, 169-176
Abstract:
The familiar two-parameter model for portfolio decisions, attributed to Markowitz [11], has individuals maximizing an objective function, ϕ [E(Y), V(Y)], of mean and variance of end-of-period wealth, subject to a constraint imposed by initial wealth. In the usual version there is an arbitrary number, n, of risky assets with stochastic end-of-period values (price plus dividend) represented by the vector X with exogenously given mean vector μ and nonsingular variance matrix σ. There is also one riskless asset, whose certain end-of-period value per dollar invested is p. Final wealth, as constrained by initial wealth, W, is given by Y = WP + a' (X – OP), where a and P are vectors of risky asset quantities and prices. Assuming ϕE > 0 (wealth preference), ϕV
Date: 1981
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:jfinqa:v:16:y:1981:i:02:p:169-176_00
Access Statistics for this article
More articles in Journal of Financial and Quantitative Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().