Efficient Portfolio Selection for Pareto-Lévy Investments**
Paul Samuelson
Journal of Financial and Quantitative Analysis, 1967, vol. 2, issue 2, 107-122
Abstract:
The Markowitz analysis of efficient portfolio selection, which can be interpreted as solving the quadratic-programming problem of minimizing the variance of a normal variate subject to each prescribed mean value, easily can be generalized (in the special case of independently distributed investments) to the concave-programming problem of minimizing the “dispersion” of a stable Pareto-Lévy variate subject to each prescribed mean value. Some further generalizations involving interdependent distributions will also be presented here.
Date: 1967
References: Add references at CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:jfinqa:v:2:y:1967:i:02:p:107-122_01
Access Statistics for this article
More articles in Journal of Financial and Quantitative Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().