The Maximum Entropy Distribution of an Asset Inferred from Option Prices
Peter W. Buchen and
Michael Kelly
Journal of Financial and Quantitative Analysis, 1996, vol. 31, issue 1, 143-159
Abstract:
This paper describes the application of the Principle of Maximum Entropy to the estimation of the distribution of an underlying asset from a set of option prices. The resulting distribution is least committal with respect to unknown or missing information and is, hence, the least prejudiced. The maximum entropy distribution is the only information about the asset that can be inferred from the price data alone. An extension to the Principle of Minimum Cross-Entropy allows the inclusion of prior knowledge of the asset distribution. We show that the maximum entropy distribution is able to accurately fit a known density, given simulated option prices at different strikes.
Date: 1996
References: Add references at CitEc
Citations: View citations in EconPapers (102)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:jfinqa:v:31:y:1996:i:01:p:143-159_00
Access Statistics for this article
More articles in Journal of Financial and Quantitative Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().