The Accuracy of Trade Classification Rules: Evidence from Nasdaq
Katrina Ellis,
Roni Michaely and
Maureen O'Hara
Journal of Financial and Quantitative Analysis, 2000, vol. 35, issue 4, 529-551
Abstract:
Researchers are increasingly using data from the Nasdaq market to examine pricing behavior, market design, and other microstructure phenomena. The validity of any study that classifies trades as buys or sells depends on the accuracy of the classification method. Using a Nasdaq proprietary data set that identifies trade direction, we examine the validity of several trade classification algorithms. We find that the quote rule, the tick rule, and the Lee and Ready (1991) rule correctly classify 76.4%, 77.66%, and 81.05% of the trades, respectively. However, all classification rules have only a very limited success in classifying trades executed inside the quotes, introducing a bias in the accuracy of classifying large trades, trades during high volume periods, and ECN trades. We also find that extant algorithms do a mediocre job when used for calculating effective spreads. For Nasdaq trades, we propose a new and simple classification algorithm that improves over extant algorithms.
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (183)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:jfinqa:v:35:y:2000:i:04:p:529-551_00
Access Statistics for this article
More articles in Journal of Financial and Quantitative Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().