Average Rate Claims with Emphasis on Catastrophe Loss Options
Gurdip Bakshi and
Dilip Madan
Journal of Financial and Quantitative Analysis, 2002, vol. 37, issue 1, 93-115
Abstract:
This article studies the valuation of options written on the average level of a Markov process. The general properties of such options are examined. We propose a closed-form characterization in which the option payoff is contingent on cumulative catastrophe losses. In our framework, the loss rate is a mean-reverting Markov process, with no continuous martingale component. The model supposes that high loss levels have lower arrival rates. We analytically derive the cumulative loss process and its characteristic function. The resulting option model is promising.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:jfinqa:v:37:y:2002:i:01:p:93-115_00
Access Statistics for this article
More articles in Journal of Financial and Quantitative Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().