EconPapers    
Economics at your fingertips  
 

Sharpe Ratios and Alphas in Continuous Time

Lars Nielsen and Maria Vassalou

Journal of Financial and Quantitative Analysis, 2004, vol. 39, issue 1, 103-114

Abstract: This paper proposes modified versions of the Sharpe ratio and Jensen's alpha, which are appropriate in a simple continuous-time model. Both are derived from optimal portfolio selection. The modified Sharpe ratio equals the ordinary Sharpe ratio plus half of the volatility of the fund. The modified alpha also differs from the ordinary alpha by a second-moment adjustment. The modified and the ordinary Sharpe ratios may rank funds differently. In particular, if two funds have the same ordinary Sharpe ratio, then the one with the higher volatility will rank higher according to the modified Sharpe ratio. This is justified by the underlying dynamic portfolio theory. Unlike their discrete-time versions, the continuous-time performance measures take into account that it is optimal for investors to change the fractions of their wealth held in the fund vs. the riskless asset over time.

Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:jfinqa:v:39:y:2004:i:01:p:103-114_00

Access Statistics for this article

More articles in Journal of Financial and Quantitative Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:jfinqa:v:39:y:2004:i:01:p:103-114_00