New Methods for Inference in Long-Horizon Regressions
Erik Hjalmarsson
Journal of Financial and Quantitative Analysis, 2011, vol. 46, issue 3, 815-839
Abstract:
I develop new results for long-horizon predictive regressions with overlapping observations. I show that rather than using autocorrelation robust standard errors, the standard t-statistic can simply be divided by the square root of the forecasting horizon to correct for the effects of the overlap in the data. Further, when the regressors are persistent and endogenous, the long-run ordinary least squares (OLS) estimator suffers from the same problems as the short-run OLS estimator, and it is shown how similar corrections and test procedures as those proposed for the short-run case can also be implemented in the long run. An empirical application to stock return predictability shows that, contrary to many popular beliefs, evidence of predictability does not typically become stronger at longer forecasting horizons.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:jfinqa:v:46:y:2011:i:03:p:815-839_00
Access Statistics for this article
More articles in Journal of Financial and Quantitative Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().