Validation of Default Probabilities
Andreas Blöchlinger
Journal of Financial and Quantitative Analysis, 2012, vol. 47, issue 5, 1089-1123
Abstract:
Well-performing default predictions show good discrimination and calibration. Discrimination is the ability to separate defaulters from nondefaulters. Calibration is the ability to make unbiased forecasts. I derive novel discrimination and calibration statistics to verify forecasts expressed in terms of probability under dependent observations. The test statistics’ asymptotic distributions can be derived in analytic form. Not accounting for cross correlation can result in the rejection of actually well-performing predictions, as shown in an empirical application. I demonstrate that forecasting errors must be serially uncorrelated. As a consequence, my multiperiod tests are statistically consistent.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:jfinqa:v:47:y:2012:i:05:p:1089-1123_00
Access Statistics for this article
More articles in Journal of Financial and Quantitative Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().