A Model-Free Measure of Aggregate Idiosyncratic Volatility and the Prediction of Market Returns
René Garcia,
Daniel Mantilla-García and
Lionel Martellini
Authors registered in the RePEc Author Service: Daniel Mantilla Garcia ()
Journal of Financial and Quantitative Analysis, 2014, vol. 49, issue 5-6, 1133-1165
Abstract:
In this paper, we formally show that the cross-sectional variance of stock returns is a consistent and asymptotically efficient estimator for aggregate idiosyncratic volatility. This measure has two key advantages: It is model free and observable at any frequency. Previous approaches have used monthly model-based measures constructed from time series of daily returns. The newly proposed cross-sectional volatility measure is a strong predictor for future returns on the aggregate stock market at the daily frequency. Using the cross section of size and book-to-market portfolios, we show that the portfolios’ exposures to the aggregate idiosyncratic volatility risk predict the cross section of expected returns.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: A Model-Free Measure of Aggregate Idiosyncratic Volatility and the Prediction of Market Returns (2013)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:jfinqa:v:49:y:2014:i:5-6:p:1133-1165_00
Access Statistics for this article
More articles in Journal of Financial and Quantitative Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().