Are Ratings the Worst Form of Credit Assessment Except for All the Others?
Andreas Blöchlinger and
Markus Leippold ()
Journal of Financial and Quantitative Analysis, 2018, vol. 53, issue 1, 299-334
Abstract:
We present a prediction model to forecast corporate defaults. In a theoretical model, under incomplete information in a market with publicly traded equity, we show that our approach must outperform ratings, Altman’s Z-score, and Merton’s distance to default. We reconcile the statistical and structural approaches under a common framework; that is, our approach nests Altman’s and Merton’s approaches as special cases. Empirically, the combined approach is indeed the most powerful predictor, and the numbers of observed defaults align well with the estimated probabilities. With a new transformation method, we obtain cycle-adjusted forecasts that still outperform ratings.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:jfinqa:v:53:y:2018:i:01:p:299-334_00
Access Statistics for this article
More articles in Journal of Financial and Quantitative Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().