Using Stocks or Portfolios in Tests of Factor Models
Andrew Ang,
Jun Liu and
Krista Schwarz
Journal of Financial and Quantitative Analysis, 2020, vol. 55, issue 3, 709-750
Abstract:
We examine the efficiency of using individual stocks or portfolios as base assets to test asset pricing models using cross-sectional data. The literature has argued that creating portfolios reduces idiosyncratic volatility and allows more precise estimates of factor loadings, and consequently risk premia. We show analytically and empirically that smaller standard errors of portfolio beta estimates do not lead to smaller standard errors of cross-sectional coefficient estimates. Factor risk premia standard errors are determined by the cross-sectional distributions of factor loadings and residual risk. Portfolios destroy information by shrinking the dispersion of betas, leading to larger standard errors.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (36)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:jfinqa:v:55:y:2020:i:3:p:709-750_1
Access Statistics for this article
More articles in Journal of Financial and Quantitative Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().