Measuring Firm Complexity
Tim Loughran and
Bill McDonald
Journal of Financial and Quantitative Analysis, 2024, vol. 59, issue 6, 2487-2514
Abstract:
In business research, firm size is both ubiquitous and readily measured. Complexity, another firm-related construct, is also relevant, but difficult to measure and not well-defined. As a result, complexity is less frequently incorporated in empirical designs. We argue that most extant measures of complexity are one-dimensional, have limited availability, and/or are frequently misspecified. Using both machine learning and an application-specific lexicon, we develop a text solution that uses widely available data and provides an omnibus measure of complexity. Our proposed measure, used in tandem with 10-K file size, provides a useful proxy that dominates traditional measures.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:jfinqa:v:59:y:2024:i:6:p:2487-2514_1
Access Statistics for this article
More articles in Journal of Financial and Quantitative Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().