EconPapers    
Economics at your fingertips  
 

Deep Learning in Characteristics-Sorted Factor Models

Guanhao Feng (), Jingyu He, Nicholas G. Polson and Jianeng Xu

Journal of Financial and Quantitative Analysis, 2024, vol. 59, issue 7, 3001-3036

Abstract: This article presents an augmented deep factor model that generates latent factors for cross-sectional asset pricing. The conventional security sorting on firm characteristics for constructing long–short factor portfolio weights is nonlinear modeling, while factors are treated as inputs in linear models. We provide a structural deep-learning framework to generalize the complete mechanism for fitting cross-sectional returns by firm characteristics through generating risk factors (hidden layers). Our model has an economic-guided objective function that minimizes aggregated realized pricing errors. Empirical results on high-dimensional characteristics demonstrate robust asset pricing performance and strong investment improvements by identifying important raw characteristic sources.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:jfinqa:v:59:y:2024:i:7:p:3001-3036_1

Access Statistics for this article

More articles in Journal of Financial and Quantitative Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-22
Handle: RePEc:cup:jfinqa:v:59:y:2024:i:7:p:3001-3036_1